Extensions 1→N→G→Q→1 with N=C2xC42 and Q=D5

Direct product G=NxQ with N=C2xC42 and Q=D5
dρLabelID
D5xC2xC42160D5xC2xC4^2320,1143

Semidirect products G=N:Q with N=C2xC42 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2xC42):1D5 = C4xD10:C4φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):1D5320,565
(C2xC42):2D5 = (C2xC42):D5φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):2D5320,567
(C2xC42):3D5 = C2xC42:D5φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):3D5320,1144
(C2xC42):4D5 = C2xC42:2D5φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):4D5320,1150
(C2xC42):5D5 = C2xD20:4C4φ: D5/C5C2 ⊆ Aut C2xC4280(C2xC4^2):5D5320,554
(C2xC42):6D5 = (C2xC4):6D20φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):6D5320,566
(C2xC42):7D5 = C2xC4xD20φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):7D5320,1145
(C2xC42):8D5 = C4xC4oD20φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):8D5320,1146
(C2xC42):9D5 = C2xC20:4D4φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):9D5320,1147
(C2xC42):10D5 = C2xC4.D20φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):10D5320,1148
(C2xC42):11D5 = C42.276D10φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):11D5320,1149
(C2xC42):12D5 = C42.277D10φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2):12D5320,1151

Non-split extensions G=N.Q with N=C2xC42 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C2xC42).1D5 = (C2xC20):8C8φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).1D5320,82
(C2xC42).2D5 = C2xC42.D5φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).2D5320,548
(C2xC42).3D5 = C4xC10.D4φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).3D5320,558
(C2xC42).4D5 = C42:4Dic5φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).4D5320,559
(C2xC42).5D5 = C10.92(C4xD4)φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).5D5320,560
(C2xC42).6D5 = C42:5Dic5φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).6D5320,564
(C2xC42).7D5 = C42:6Dic5φ: D5/C5C2 ⊆ Aut C2xC4280(C2xC4^2).7D5320,81
(C2xC42).8D5 = C4xC4.Dic5φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2).8D5320,549
(C2xC42).9D5 = C2xC20:3C8φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).9D5320,550
(C2xC42).10D5 = C20:13M4(2)φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2).10D5320,551
(C2xC42).11D5 = C42.6Dic5φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2).11D5320,552
(C2xC42).12D5 = C42.7Dic5φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2).12D5320,553
(C2xC42).13D5 = C20:7(C4:C4)φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).13D5320,555
(C2xC42).14D5 = (C2xC20):10Q8φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).14D5320,556
(C2xC42).15D5 = C4xC4:Dic5φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).15D5320,561
(C2xC42).16D5 = C42:8Dic5φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).16D5320,562
(C2xC42).17D5 = C42:9Dic5φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).17D5320,563
(C2xC42).18D5 = C2xC4xDic10φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).18D5320,1139
(C2xC42).19D5 = C2xC20:2Q8φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).19D5320,1140
(C2xC42).20D5 = C2xC20.6Q8φ: D5/C5C2 ⊆ Aut C2xC42320(C2xC4^2).20D5320,1141
(C2xC42).21D5 = C42.274D10φ: D5/C5C2 ⊆ Aut C2xC42160(C2xC4^2).21D5320,1142
(C2xC42).22D5 = C2xC4xC5:2C8central extension (φ=1)320(C2xC4^2).22D5320,547
(C2xC42).23D5 = C42xDic5central extension (φ=1)320(C2xC4^2).23D5320,557

׿
x
:
Z
F
o
wr
Q
<